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Abstract. The accurate detection of the leaf chlorophyll (Chl) is of substantial importance for 

the immediate assessment of forest conditions to manage and conserve forest ecosystems. We 

compared 80% acetone, 95% ethanol, and dimethyl sulfoxide (DMSO) over a range of 

incubation times (2, 4, 6, 8, 18, 26, and 32 h) to determine the Chl contents of 12 tree species 

in northeast China. The results showed that to obtain the maximum Chl (a+b) contents for most 

tree species extracted by 80% acetone and 95% ethanol required a minimum of 18 h, while the 

incubation periods by DMSO were 2-6 h and 18-32 h to extract 90% of the Chl from the 

broadleaved and coniferous tree species, respectively. We observed that the amount of Chl 

extracted with DMSO was significantly higher than that extraction with 80% acetone and 95% 

ethanol, particularly for conifer species with the exception of Phellodendron amurense, 

Fraxinus mandshurica, and Tilia amurensis, in which the maximum amount of Chl was 

extracted with acetone. The DMSO extracted Chl in exhibited the lowest degree of variation 

among the three solvents. The leaf mass area (LMA), leaf thickness, and diameter of the 

primary leaf vein were significantly negatively correlated with the Chl a, Chl b, and Chl (a+b) 

content for the 12 tree species. There were non-significant different slopes or intercepts 

between the curves for LMA and Chl a, Chl b, or Chl (a+b) at the different incubation times 

for the same solvent or the different solvents at the certain incubation time (P>0.05). 

1. Introduction 

Chlorophyll (Chl) is one of the most fundamental and important physiological parameters in forest 

ecology. The accurate measurement of the Chl content is of substantial significance for the 

management and protection of forest ecosystem function. The traditional process for the determination 

of the foliar Chl content (Chl a, Chl b, and Chl (a+b)), which are the most widely distributed two 

forms of Chl that occur naturally in the trees, has been measured by the extraction of leaf tissue 

obtained with acetone, methanol, ethanol, or dimethyl sulfoxide (DMSO), followed by 

spectrophotometric measurements. Researchers have found that solvents can vary in their ability to 

extract Chl from different plants. It is practical to determine the most effective solvent for a particular 

set of samples. 
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Acetone has been the most widely used solvent for extracting Chl from a variety of plant tissues at 

room temperature or 4 ºC for its substantial benefit of providing very sharp Chl absorption peaks. The 

drawbacks of using acetone are that the sample preparation is laborious, and the extraction is time 

consuming, which raises questions about loss of Chl, Chl stability, and Chl may not be completely 

extracted from many vascular plants even after physical treatments. This lack of complete extraction is 

a particular problem for cold acetone. Jinasena et al. (2016) showed that the Chl extraction from the 

leaves of Alternanthera sessilis using 80% acetone improved with the increase in temperature up to 50 

ºC, and the Chl extraction at 60 ºC was slightly lower than that at 50 ºC, but the Chl contents remained 

stable through the extraction time from 1 to 5 h [5]. At the same time, hot ethanol (60-80 ºC) is often a 

more efficient solvent to extract Chl in organisms that are recalcitrant for the extraction process [8, 16]. 

Additionally, ethanol has relatively non-toxic, practical, and economic advantages, thus making it a 

more desirable solvent for Chl extraction in the laboratory [12, 13, 16]. 

DMSO has been widely used for Chl extraction from higher plants [1, 4, 29], lichens [1, 18] and 

mosses, and these methods have also been optimized for specific applications [20], since Shoaf & 

Lium (1976) reported that DMSO was superior to acetone in the Chl extraction from a wide range of 

algal species [22]. This procedure is relatively quick and does not require grinding or centrifugation of 

the sample, and a large number of samples may be quickly prepared and analyzed. 

The Chl extraction efficiency of the terrestrial plants was compared using different solvents [1, 4, 25]. 

However, most of the materials were limited in herbs or crops, and the woody plants were less 

involved. In addition, the DMSO method, originally applied to the determination of the Chl content in 

algae, was successfully applied to gymnosperms and angiosperms [4], and then was widely used in 

different plants [1, 18, 23, 29]. The application of hot ethanol, acetone, and DMSO to terrestrial 

woody plants to compare the extraction efficiencies of the Chl content for 11 tree species was only 

attempted by Minocha et al. (2009) [9]. Since Chl extraction methods may provide variable results, 

studies using different solvents should be compared cautiously unless the specific methods have been 

calibrated. 

The extraction efficiency of Chl is closely related to the type of organic solvent [2, 12] due to the 

differences in the leaf tissue [21, 25] and anatomic characteristics [10]. For example, Shinano et al. 

(1996) found that the different morphological and anatomical characteristics of graminoid leaf 

vascular were among the factors that affected the extraction efficiency using DMSO at 65 ºC that was 

incubated for at least 1 h [21]. Tait & Hik (2003) also certified that the Chl extraction from the thick, 

highly cutinized leaves of the graminoid C. citrates using DMSO was generally lower than that 80% 

acetone [25]. Nikolopoulos et al. (2008) observed that the specific leaf mass, leaf density, and leaf 

thickness did not strongly affect the extraction efficiency of DMSO for 19 species with different 

anatomical characteristics [10]. However, heterobaric leaves, which are characterized by the 

occurrence of bundle sheath extensions in the mesophyll, showed lower extraction efficiency in 

DMSO compared with homobaric leaves and conifer needles, while the extraction efficiencies of the 

latter in DMSO were comparable to those obtained using the acetone extraction. Bundle sheath 

extensions within heterobaric leaves behave as anatomical barriers that prevent the diffusion of DMSO, 

even after prolonged incubation with the solvent. 

In this study, we compared the foliar DMSO extraction efficiency to determine the extraction 

capabilities of Chl a, Chl b, and Chl (a+b) with 80% acetone and 95% ethanol under the same 

conditions to determine the optimal extraction time for the whole leaf tissue pigments extraction in a 

variety of tree species in northeast China. We hypothesized that the foliar Chl extraction efficiency 

without grinding the plant material, a procedural step normally required during acetone extraction, in 

different solvents would be influenced by changes in the extraction periods. Particularly, we expected 

that hot acetone would be unsuccessful at measuring the leaf Chl for long incubation periods. A 

second objective of our study was to investigate the extraction efficiency using DMSO, acetone, and 

ethanol versus specific leaf traits parameters to identify which character is responsible for the low 

solvent efficiency in the different tree species. 
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2. Materials and methods 

2.1. Site description and plant material 

The experiment was conducted at the Demonstration Base of Urban Forestry in the northeast Forestry 

University, Harbin, Heilongjiang Province, northeast China (45°43′N, 126°37′E). The demonstration 

base area is 43.95 hm2. The regional climate is described as a temperate monsoon, which is 

characterized by warm summers, cold winters, a short growing season, and abundant precipitation 

with the annual average temperature and annual precipitation of 3.5 ºC and 569.1 mm primarily 

occurring from June to September, respectively. The base was farmland before 1949, and its original 

vegetation was valley meadow steppe. We investigated the main tree species in northeast 

China—Betula platyphylla (Bp), Tilia amurensis (Ta), Quercus mongolica (Qm), Ulmus davidiana var. 

japonica (Ud), Acer mono (Am), Phellodendron amurense (Pa), Fraxinus mandshurica (Fm), Juglans 

mandshurica (Jm), Pinus koraiensis (Pks), Picea koraiensis (Pkn), Larix gmelinii (Lg), and Pinus 

sylvestris var. mongolica (Ps) with a range of species whose leaf tissues were quite different. 

2.2. Chlorophyll extraction 

For each species, six fully developed, outermost healthy fresh green leaves from the top third of the 

south-oriented crown per tree of three sample trees were randomly chosen to measure the Chl contents 

at approximately 9 a.m. on sunny days. The leaves were placed in labeled plastic bags in coolers with 

ice and immediately transported to the laboratory for Chl extraction. 

We determined the Chl based on the same procedures and conditions for sampling, pigments 

extraction, and measured by the same spectrophotometer to reduce the potential of a large amount of 

error into the results (Linder, 1974). Briefly, the leaf area discs for broadleaves and needles were cut 

into pieces approximately 2 mm in length, and the fresh mass (FM) of the leaf was determined by an 

analytical balance (Sartorius BT224S, Sartorius Scientific Instruments Co., Ltd., China). Six replicates 

of each species were placed in 10 ml 80% acetone, 95% ethanol, and DMSO, which were incubated in 

a water bath maintained at 65 ºC for 32 h in the dark. The absorbance of the solution was measured at 

664 nm and 647 nm for 80% acetone, 664 nm and 649 nm for 95% ethanol, 665 nm and 649 nm for 

DMSO for Chl a and Chl b at 2, 4, 6, 8, 18, 26, and 32 h for the broadleaved species, and at 4, 8, 18, 

26, 32 h for the conifer trees by a UV-visible spectrophotometer (WFJ-2100, INESA Analytical 

Instrument Co. LTD., Shanghai, China). The Chl contents (mg·g-1) were determined by the specific 

published equations by applying the absorbance values to the equations reported by Lichtenthaler 

(1987) [6] for the acetone and ethanol, and Wellburn (1994) [29] for the DMSO. Chl (a+b) was 

calculated as the sum of Chl a and Chl b. All the procedures were performed under diffused light to 

eliminate the exposure of the leaf materials to direct, bright or sun light. 

2.3. Leaf traits measurement 

An additional 30 leaf samples per three trees of each species were collected to determine the leaf traits, 

including the leaf thickness (LT), primary leaf vein diameter (LVDa), leaf mass area (LMA) and leaf 

water content (LWC). Calipers were placed on a leaf at a representative point of the midrib, closed 

until the calipers had securely grasped the leaf, and the calipers were slowly opened until the leaf 

would slide out when gently pulled. This distance was considered to be the leaf thickness. The fresh 

mass of each leaf in which the petioles were cut was determined by an analytical balance, and the 

leaves were then scanned (Model T210, Founder Technology Instrument Co. Ltd., Beijing, China) to 

obtain high-resolution images to measure the leaf area, and leaf vein diameter using Image J software 

(NIH, Bethesda, MD, USA). Finally, the leaf samples were dried at 85 ºC for at least 26 h, and the dry 

mass was recorded. The LMA was calculated as the ratio of the leaf dry mass to the leaf area. The 

LWC was calculated as the ratio of the difference between the fresh mass and the dry mass to the fresh 

mass. 
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2.4. Statistical analysis 

We analyzed the species, solvents, and temporal effects on the Chl contents using repeated measures 

ANOVA. The species was treated as a fixed factor; the extraction time was treated as the fixed 

repeated factor, and the individual tree was treated as a random factor. The mean Chl content among 

all the leaves within an individual tree and measurement period was used in the analysis (i.e., n = 3). 

The treatment means were compared using Fisher’s Least Significant Difference test to determine the 

extraction time and solvent. The ratio of the maximum to minimum was used to describe the variation 

of the Chl content with the extraction time. All the analyses were performed using a mixed model 

procedure (PROC MIXED) of SAS Version 9.3 (SAS, Inc., Cary, NC, USA) with α = 0.05. 

We explored the relationships between the Chl a, Chl b, and Chl (a+b) contents and leaf traits 

through correlation procedures and fit the relationships between the Chls contents and LMA through 

regression analysis using the curve-fitting procedure and chose the highest R2 of SPSS 18.0 (SPSS, 

Inc., Chicago, IL, USA). The ordinary least squares regression techniques were performed to test the 

incubation time and different solvents on the LMA versus the Chls relationships [27]. 

3. Results 

The Chl a, Chl b, and Chl (a+b) extracted by 80% acetone increased with the extraction extension, 

reaching the highest values on 18, 26, and 32 h, and there were no significant differences in the three 

time periods (P>0.05) with the exception that Chl a, Chl b, and Chl (a+b) for Lg, Ud and Am peaked 

at 4 and 6 h with a pattern for the former of a concave curve, while the latter was a single peak curve 

(Figure 1). The Chl a, Chl b, and Chl (a+b) for Fm increased sharply at 18, 26, and 32 h, and the ratio 

of the maximum to minimum was as high as 4. The extreme value ratio of the three indices for the rest 

of species were 1.1- 2.2 with the exception of the Chl b of Ta. 

The Chl a, Chl b, and Chl (a+b) extracted by 95% ethanol also increased with the extraction 

extension. The highest values occurred at 18, 26, and 32 h, and most of them were non-significant 

differences during the above time periods (P>0.05) with the exception that Chl a, Chl b, and Chl (a+b) 

for Pa and Jm peaked at 2 and 4 h and then decreased slightly (Figure 1). The extreme value ratio of 

Chl a, Chl b, and Chl (a+b) for Ps, Pkn and Pks were the highest, followed by Fm, and the rest of the 

species were the lowest. The values were 2.5-3.6, 1.6-2.5, and 1.0-1.5, respectively. 

The Chl a, Chl b and Chl (a+b) extracted by DMSO for Ps, Pkn and Pks increased with the 

extraction time and reached the highest at 26, 32 and 18 h, respectively, which was significantly 

higher than those of the other time periods (P<0.05) (Figure 1). The extreme value ratios were 1.3-1.9. 

The Chl a and Chl b values for the other nine species decreased or increased with the extension time, 

and the amplitude varied between species. For example, the Chl a contents for Jm and Fm were the 

highest at 2-8 h (P>0.05). The extreme value ratios were 1.2 and 1.6. However, the Chl b readings 

were the highest at 18-26-32 h, and the extreme value ratios were 1.6 and 3.3. The extreme value 

ratios of Chl a and Chl b for the remaining seven tree species were in the range of 1.1-1.4. The 

extreme value ratios of Chl (a+b) for the eight tree species were in the range of 1.0-1.1 with the 

exception of Fm. 
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Figure 1. Diagrams relating mean ± SE chlorophylls to the extraction time for 80% acetone (open 

circle, Chl a; filled circle, Chl b; half-filled circle, Chl (a+b)), 95% ethanol (open triangle, Chl a; filled 

triangle, Chl b; half-filled triangle, Chl (a+b)), and DMSO (open square, Chl a; filled square, Chl b; 

half-filled square, Chl (a+b)) for 12 tree species. 

DMSO-extracted Chl (a+b) for the coniferous tree species were significantly higher than those of 

80% acetone and 95% ethanol (P<0.05) during the same period. The DMSO extraction of Chl (a+b) 

for Ps, Pkn, Pks and Lg was 1.4-1.7, 1.3-2.2, and 2.2-3.9 fold greater than that of 80% acetone, 

respectively. The Chl (a+b) extracted by 95% ethanol for Lg were 1.4-2.2 fold greater than that of 80% 

acetone (P<0.05) whereas the Chl (a+b) extracted by 95% ethanol for Ps, Pkn and Pks was lower than 

that of 80% acetone. Specifically, the former was 0.4-0.7 times that of the latter from 2 to 8 h 

(P<0.05). 

The Chl (a+b) extraction from the broad-leaved trees could be divided into three groups. First, 

DMSO extracted the highest Chl content from Bp, Jm, and Qm. The extraction amount of DMSO was 

1.1-1.6-fold that of 95% ethanol and 80% acetone, respectively. The ratio between 95% ethanol and 

80% acetone was 0.9-1.1. Second, the extraction efficiency of Chl (a+b) by DMSO and 95% ethanol 

for Ud and Am was similar and was 1.1-2.4 fold that of 80% acetone. Third, the extraction of Chl (a+b) 

by DMSO and 95% ethanol for Pa, Fm and Ta was similar at 2-8 h and was 1.3-2.4 fold that of the 80% 

acetone. However, at 18-32 h, the extraction amount from high to low was 80% acetone, 95% ethanol 

and DMSO. The extraction amount with the 80% acetone was 1.1-1.4 fold that of DMSO. 

Table 1. Correlation coefficients between the Chl content extracted by 80% acetone, 95% ethanol or 

DMSO and the leaf traits including leaf mass area (LMA), leaf water content (LWC), leaf thickness 

(LT), and primary leaf vein diameter (LVDa) for 12 tree species. ** P<0.01, * P<0.05, – not 

significant. 

Time 

 (h) 

Leaf 

traits 

Chl a Chl b Chl (a+b) 

80% 95% DMSO 80% 95% DMSO 80% 95% DMSO 
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4 

LMA -0.78** -0.86** -0.83** -0.74** -0.81** -0.70* -0.77** -0.85** -0.80** 

LWC – 0.64* 0.59* – – – – 0.62* – 

LT -0.85** -0.91** -0.91** -0.81** -0.85** -0.78** -0.84** -0.89** -0.88** 

LVDa -0.82** -0.91** -0.85** -0.77** -0.85** -0.66* -0.80** -0.89** -0.80** 

8 

LMA -0.78** -0.86** -0.82** -0.70* -0.82** -0.67* -0.76** -0.85** -0.78** 

LWC – 0.66* – – 0.60* – – 0.64* – 

LT -0.82** -0.91** -0.90** -0.75** -0.85** -0.76** -0.81** -0.90** -0.87** 

LVDa -0.86** -0.93** -0.84** -0.70* -0.88** -0.62* -0.82** -0.92** -0.78** 

18 

LMA -0.73** -0.80** -0.74** -0.69* -0.77** -0.65* -0.73** -0.80** -0.76** 

LWC 0.59* 0.61* – – 0.59* – 0.58* 0.61* – 

LT -0.72** -0.87** -0.83** -0.69* -0.81** -0.73** -0.73** -0.85** -0.86** 

LVDa -0.82** -0.91** -0.79** -0.71** -0.85** -0.61* -0.80** -0.90** -0.77** 

26 

LMA -0.75** -0.78** -0.71** -0.73** -0.75** -0.62* -0.75** -0.78** -0.75** 

LWC 0.61* 0.59* – 0.59* 0.59* – 0.61* 0.60* – 

LT -0.75** -0.85** -0.81** -0.73** -0.80** -0.69* -0.75** -0.84** -0.85** 

LVDa -0.84** -0.91** -0.75** -0.75** -0.84** – -0.82** -0.89** -0.75** 

32 

LMA -0.77** -0.78** -0.70** 

** 

-0.74** -0.78** -0.60* -0.77** -0.79** -0.75** 

LWC 0.67* 0.60* – 0.61* 0.61* – 0.66* 0.61* – 

LT -0.76** -0.85** -0.80** -0.73** -0.81** -0.66* -0.76** -0.85** -0.84** 

LVDa -0.84** -0.89** -0.74** -0.78** -0.86** – -0.83** -0.89** -0.74** 

The Chl a, Chl b, and Chl (a+b) extracted by 80% acetone, 95% ethanol and DMSO over a range 

of incubation times for the 12 tree species were significantly negatively correlated with the LMA, LT, 

and LVDa and mostly non-significantly correlated with the LWC (Table 1). Since the LMA, LT, and 

LVDa were significantly positively correlated with each other, we explored the relationships between 

the Chl a, Chl b, and Chl (a+b) with LMA through regression analyses. The power equations 

described the relationship between Chl content and LMA marginally better than the rest of the models 

(Table 2). There were non-significantly different slopes or intercepts between the different incubation 

times for the same solvent (P>0.05) and between the different solvents at the certain incubation time 

(P>0.05) with the exception that the intercepts for Chl a extracted by 95% ethanol were significantly 

higher than those by 80% acetone and DMSO at incubation times of 4 h and 8 h (P<0.05).  

Table 2. The best equations between LMA and the Chl a, Chl b, and Chl (a+b) extracted by 80% 

acetone, 95% ethanol and DMSO for 12 tree species. 

Solvent Chl Incubation time (h) 

4 8 18 26 32 

80% 

Chl a 
y=45.338x-0.84 

R2=0.75 

y=41.48x-0.79 

R2=0.76 

y=39.97x-0.76 

R2=0.63 

y=43.25x-0.77 

R2=0.69 

y=43.96x-0.77 

R2=0.78 

Chl b 
y=17.29x-0.83 

R2=0.69 

y=15.82x-0.76 

R2=0.65 

y=32.74x-0.92 

R2=0.63 

y=27.92x-0.86 

R2=0.69 

y=28.17x-0.84 

R2=0.69 

Chl (a+b) 
y=63.34x-0.84 

R2=0.73 

y=57.04x-0.78 

R2=0.73 

y=68.39x-0.80 

R2=0.64 

y=69.29x-0.79 

R2=0.71 

y=71.48x-0.79 

R2=0.76 

95% 

Chl a 
y=224.119x-1.19 

R2=0.74 

y=69.19x-0.88 

R2=0.79 

y=28.06x-0.65 

R2=0.70 

y=22.56x-0.59 

R2=0.67 

y=20.94x-0.58 

R2=0.66 

Chl b 
y=206.76x-1.37 

R2=0.72 

y=93.87x-1.15 

R2=0.75 

y=43.76x-0.94 

R2=0.69 

y=35.20x-0.88 

R2=0.68 

y=41.95x-0.92 

R2=0.70 

Chl (a+b) 
y=411.99x-1.25 

R2=0.74 

y=136.93x-0.96 

R2=0.78 

y=58.37x-0.73 

R2=0.71 

y=47.31x-0.68 

R2=0.68 

y=48.04x-0.68 

R2=0.69 

DMSO 

Chl a 
y=28.84x-0.63 

R2=0.72 

y=21.27x-0.55 

R2=0.67 

y=14.14x-0.46 

R2=0.57 

y=11.92x-0.43 

R2=0.54 

y=11.03x-0.42 

R2=0.53 

Chl b 
y=19.31x-0.77 

R2=0.58 

y=12.56x-0.65 

R2=0.55 

y=18.09x-0.69 

R2=0.56 

y=15.36x-0.65 

R2=0.56 

y=14.32x-0.64 

R2=0.55 

Chl (a+b) 
y=46.62x-0.67 

R2=0.68 

y=33.32x-0.58 

R2=0.64 

y=29.55x-0.54 

R2=0.62 

y=25.65x-0.51 

R2=0.63 

y=24.08x-0.50 

R2=0.63 

4. Discussion 

The Chl extraction efficiency by the solvents differed depending on the plant materials. The Chl (a+b) 

extracted by DMSO was higher [1, 9, 20], lower [9, 25] or similar [1, 4, 25] compared with 80% 
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acetone and 95% ethanol. A comparison between ethanol and acetone also indicated differences 

between the species [9, 19]. For example, Minocha et al. (2009) [9] found the Chl extracted by DMSO 

was the highest for five conifer tree species, but the data for six broadleaved species were different. 

The Chl (a+b) extracted by 95% ethanol for Fagus grandifolia and DMSO for Q. velutina was the 

highest. For Prunus serotina and Liriodendron tulipifera, the Chl (a+b) extracted using 95% ethanol 

and DMSO was similar and significantly higher than that extracted by 80% acetone. There was no 

significant difference between the extractions of B. alleghaniensis and Tsuga canadensis using 80% 

acetone, 95% ethanol and DMSO. Our results showed DMSO was a better solvent for the Chl 

extraction with the exception of the highest extraction of Chl of Pa, Fm, and Ta obtained with 80% 

acetone, and these results supported the concept that DMSO extracted the conifer species efficiently as 

indicated by the results of Minocha et al. (2009) [9] and Barnes et al. (1992) [1]. 

The extraction time of Chl is based on the diffusivity of solvents within the particular intact plant 

tissue. The solvent extraction times varied from 15 min to 7 h [4, 11, 21, 28], and 26 h [25] for DMSO. 

At 65 ºC, Chl (a+b) was extracted from the leaves of Trifolium subterraneum with DMSO, and over 

99% of the Chl was extracted at 1 h [20]. However, the Chl (a+b) at 7, 26, and 48 h for P. virginiana, 

Helianthus annuus, Fragaria vesca, Andropogon gerardii, and Cymbopogon citrates were similar [25]. 

With the increase in the extraction time from 4, 6, 8, 26, and 48 h, the Chl a and Chl b contents 

extracted by DMSO at 25, 40, 60, and 80 ºC for the leaves of C. unshiu Marc. cv. Okitsu increased 

with the exception that Chl a extracted by 80 ºC at 48 h decreased slightly [3]. The Chl content for A. 

sessilis was very stable with the protracted extraction extension using hot acetone [5]. The Chl 

extraction was performed with 95% ethanol at 70 ºC for 30 min for the birch, beech, ash, and 

sycamore. Our study showed that the Chl contents extracted by 80% acetone and 95% ethanol for 

most of the tree species increased with the prolonged extraction time and reached the highest value at 

least for 18 h. The Chl content extracted by DMSO for the thicker conifer leaves of Pks, Pkn, and Ps 

was the highest from 18 to 32 h. More than 90% of the Chl was extracted at 2-6 h for the rest of the 

nine tree species, although the Chl a for Jm and the Chl b for Fm decreased and increased with the 

extraction extension, and the Chl (a+b) remained stable. 

The particular sample tissues are incubated in solvents determined by the leaf thickness, degree of 

cutinization [1, 10, 21, 22] because mechanical disruption of the cells does not take place. As Hiscox 

& Israelstam (1979) [4] and Barnes et al. (1992) [1] delineated, the Chls extraction from the leaf 

tissues with DMSO requires incubation for various times, depending on the degree of cutinization and 

thickness of the leaf. Nikolopoulos et al. (2008) made the first attempt to determine the influence of 

the leaf anatomy on the extraction efficiency of DMSO for 19 plant species [10]. They observed that 

the linear correlation between each specific anatomical parameter and the extraction efficiency of the 

DMSO was poor (R2 = 0.35 for SLA, R2 = 0.44 for leaf density and R2 = 0.28 for LT). Our study 

showed that the LMA, LT and LVDa were significantly negatively correlated with the extraction 

efficiency of the solvents but not the LWC in most cases. The result supported the hypothesis that the 

extraction time of Chl is based on the diffusivity of the solvents within the particular intact plant 

tissues depending on the leaf thickness and degree of cutinization. 

The temperature used in the Chl extraction with solvents differed depending on the references. 80% 

acetone and 95%-98% ethanol were often used at 4 ºC or room temperature to extract the Chl for at 

least 26, 48, or 72 h, resulting in poor pigment stability or incomplete extraction, which could be 

solved by heating the solvents [14]. In the range of 8 to 30 ºC, the temperature had little effect on the 

Chl extraction by 80% acetone [24]. 80% acetone at 60 ºC and 65 ºC was used to extract Chl from the 

leaves of A. sessilis [5] and walnut [30], resulting in slightly lower values of Chl (a+b) than the highest 

ones obtained at 50 ºC. 95%-98% ethanol at 65 ºC [9], 70 ºC [8], and 80 ºC [16] was used to extract 

Chl from the leaves. The DMSO extracted the Chl was primarily at 65 ºC [11, 15, 28] and also at 70 

ºC [8, 26]. The Chl extraction by DMSO at 40 ºC was not complete for the thick, highly cutinized 

leaves of C. citrates [25] and fern species [1], and 65 ºC was required for complete extraction. The Chl 

(a+b) extraction of the Citrus unshiu cv. Okitsu leaves by DMSO at 60 ºC was similar with the highest 

value at 80 ºC [3]. Minocha et al. (2009) also certified that heating solvents at 65 ºC for acetone, 
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ethanol, and DMSO did not alter the Chl stability for the 11 tree species [9]. Therefore, the selection 

of 65 ºC as the optimum temperature for the Chl extraction is feasible. 

Prolonged heating may result in a lower Chl value due to the destruction of Chl. It was reported that 

Chl a was less thermally stable than Chl b. Scott & Robson (1991) found that the Chls were 

undisturbed by additional incubation for 2 h, but an extraction time of 3 h or longer would destroy the 

extracted Chl a, resulting in a decrease in Chl a and a slight increase in Chl b under the conditions of 

the extract (65 °C) in DMSO [20]. However, Hiscox & Israelstam (1979) suggested extraction times 

as long as 6 h for Chl from pine needles [4]. Barnes et al. (1992) also clearly demonstrated that the 

period of incubation in warm DMSO resulted in a lack of significant degradation of Chl a or Chl b [1]. 

Jinasena et al. (2016) also showed that the Chl content for A. sessilis was very stable with prolonged 

extraction using hot acetone, and there was no Chl degradation for a long period of time while heating 

[5]. 

The Chl absorption wavelength and the various calculation formulas used would also lead to 

different results for the same solvent. For example, the readings were 646 and 663 nm [26] and 649 

and 665 nm [25] for the Chl extracted by DMSO, and the Chl content was calculated based on the 

formula of Wellburn (1994) [29]. Some researchers believed that the DMSO absorption spectrum of 

Chl a and Chl b were the same as that in 90% acetone [4, 18, 22] and suggested determining the value 

of 645 and 663 nm and using the classical Arnon formula to calculate the Chl content [15, 20, 28]. It 

has been noted that there is a significant error in the calculations of the Chl extracted by DMSO based 

on the formula described above [1, 13] because the Arnon formula is 80% instead of 90% acetone. 

Furthermore, Barnes et al. (1992) found that the Chl content extracted by DMSO was underestimated 

by approximately 10% using the Arnon formula [1]. Parry et al. (2014) also found that the Chl content 

extracted by DMSO from 22 types of plants calculated by the acetone formula (absorption wavelength 

646.6, 663.6 nm) was underestimated by 7.84% compared with the DMSO formula (absorption 

wavelength 649.1, 665.1 nm) [11]. Therefore, the wavelengths measurement and the corresponding 

formula should be strictly followed whether using acetone, ethanol, or DMSO [6]. 

5. Conclusions 

Solvents play a major role in the process of extracting Chl. The spectrophotometric absorbance 

properties of the Chl molecules facilitate their qualitative and quantitative analysis using different 

solvents, and the contribution of these solvents to the extraction in various species was compared. 

Furthermore, suitable solvents related to the leaf traits on Chl were selected. Our results clearly 

indicated that the Chl extraction by DMSO, 80% acetone and 95% ethanol are dependent on the leaf 

morphological characteristics, such as the thickness, LMA and degree of cutinization. This study 

revealed that DMSO was the most effective solvent to extract the most significant amount of Chl for 

most of the species sampled. 
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